metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

[5,10,15,20-Tetrakis(4-tert-butylphenyl)porphyrinato- $\kappa^4 N$]zinc(II) toluene solvate

Rudolf Słota,^a* Giuseppe Mele,^b Krzysztof Ejsmont,^a Andrzej A. Domański^a and Roberta del Sole^b

^aInstitute of Chemistry, University of Opole, Oleska 48, 45-052 Opole, Poland, and ^bDipartimento di Ingegneria dell Innovazione, Universitá di Lecce, Via Arnesano, 73100 Lecce, Italy

Correspondence e-mail: rslota@uni.opole.pl

Received 22 August 2007; accepted 18 September 2007

Key indicators: single-crystal X-ray study; T = 85 K; mean σ (C–C) = 0.004 Å; disorder in solvent or counterion; R factor = 0.046; wR factor = 0.122; data-to-parameter ratio = 13.3.

The structure of the title compound, $[Zn(C_{60}H_{60}N_4)] \cdot C_7H_8$, represents a typical clathrate containing a host molecule of [5,10,15,20-tetrakis(4-tert-butylphenyl)porphyrinato]zinc(II) and a toluene guest molecule. The Zn atom occupies an inversion center and exhibits ideal square-planar coordination, while the porphyrin group remains perfectly flat. The toluene molecule lies on an inversion center and is disordered.

Related literature

For related literature, see: Berezin (1981); Mele et al. (2003, 2007); Allen (2002).

Experimental

Crystal data

β

$[Zn(C_{60}H_{60}N_4)] \cdot C_7H_8$	$V = 2586.8 (5) \text{ Å}^3$
$M_r = 994.64$	Z = 2
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation
a = 16.0277 (16) Å	$\mu = 0.52 \text{ mm}^{-1}$
b = 9.5884 (14) Å	T = 85.0 (1) K
c = 16.8714 (16) Å	$0.25 \times 0.20 \times 0.10 \text{ mm}$
$\beta = 93.892 \ (8)^{\circ}$	

Data collection

Oxford Diffraction Xcalibur diffractometer Absorption correction: none 14020 measured reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.046$	93 restraints
$wR(F^2) = 0.122$	H-atom parameters not refined
S = 1.05	$\Delta \rho_{\rm max} = 0.42 \ {\rm e} \ {\rm \AA}^{-3}$
4533 reflections	$\Delta \rho_{\rm min} = -0.37 \text{ e } \text{\AA}^{-3}$
341 parameters	

 $R_{\rm int} = 0.060$

4533 independent reflections

3375 reflections with $I > 2\sigma(I)$

Table 1

Selected geometric parameters (Å, °).

Zn1-N2	2.024 (2)	Zn1-N1	2.054 (2)
$N2-Zn1-N2^{i}$ $N2-Zn1-N1^{i}$	180 90.06 (8)	N2-Zn1-N1	89.94 (8)

Symmetry code: (i) -x + 1, -y + 1, -z + 1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2002); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 1990); software used to prepare material for publication: SHELXL97.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2028).

References

- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Berezin, B. D. (1981). Coordination Compounds of Porphyrins and Phthalocyanines, pp. 5-42. New York: Willey and Sons.
- Mele, G., Del Sole, R., Vasapollo, G., Garcia-López, E., Palmisano, L., Li, J., Słota, R. & Dyrda, G. (2007). Res. Chem. Intermed. pp. 433-438.
- Mele, G., Del Sole, R., Vasapollo, G., Garcia-López, E., Palmisano, L. & Schiavello, M. (2003). J. Catal. 217, 334-342.
- Oxford Diffraction (2002). CrysAlis CCD. Version 1.171. Oxford Diffraction, Wrocław, Poland.
- Oxford Diffraction (2006). CrysAlis RED. Version 1.171.31.5. Oxford Diffraction, Wrocław, Poland.
- Sheldrick, G. M. (1990). SHELXTL. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Acta Cryst. (2007). E63, m2582 [doi:10.1107/S1600536807045953]

[5,10,15,20-Tetrakis(4-*tert*-butylphenyl)porphyrinato- $\kappa^4 N$]zinc(II) toluene solvate

R. Slota, G. Mele, K. Ejsmont, A. A. Domanski and R. del Sole

Comment

Physicochemical properties of metallo-porphyrins depend on the complexed metal and the kind of peripherally and/or axially fixed substituents. These factors influence the electronic density distribution within the core of the macrocycle, thus determining both its stability and reactivity (Berezin, 1981). Therefore, structural details are essential in learning the basic chemistry of such compounds featuring unique properties, *e.g.* photocatalytic activity (Mele *et al.*, 2007). 5,10,15,20-Tetrakis(4-*tert*-butylphenyl)porphyrinato zinc(II) (ZnPp), when crystallized from a toluene solution yielded a typical lattice clathrate with ZnPp (host) to toluene (guest) 1:1 stoichiometry. The structure of the title *tert*-butylphenyl *meso*-substituted ZnPp derivative has been solved and reported for the first time in this work.

The crystal lattice consists of discrete centrosymmetrical molecules of ZnPp (Fig. 1) and disordered molecules of toluene, located at the inversion centre. This is a typical case of toluene disorder exhibiting two discrete positions; one molecule is staggered 180° with respect to the other one. The zinc atom is found in a plane defined by the four pyrrole-nitrogen atoms and the N—Zn—N bond angles are *ca* 90°, showing ideal square-planar coordination. The macrocycle itself shows no apparent distortion and one may consider it as "perfectly flat". The *meso* substituted benzene rings are not perpendicular to the plane of the macrocycle, yielding dihedral angles of 78.44 (7)° and 79.17 (7)°. The geometry of the porphyrin core proved typical as for the family of similar zinc porphyrins substituted in their *meso* position by four identical phenyl derivatives (Allen, 2002). The unit cell packing of the title compound is shown in Fig. 2.

Experimental

5,10,15,20-tetrakis(4-*tert*-butylphenyl)porphyrinato zinc(II) was synthesized according to a typical procedure (Mele *et al.*, 2003), applying ZnCl₂ as the metal source. Pure monocrystals for X-ray diffraction measurements were obtained by multiple re-crystallization from toluene (reagent grade) at room temperature, yielding the final product in the form of a toluene solvate.

Refinement

The hydrogen atoms were included in the refinement at geometrically idealized positions with C—H distances 0.96 Å for methyl and toluene solvate and 0.93 Å for the rest of the hydrogen atoms and $U_{eq} = 1.5$ and 1.2 times U_{eq} of the parent atoms, respectively. The toluene solvate was lying about inversion centers and was disordered.

Figures

Fig. 1. The molecular structure of the title compound, showing 50% displacement ellipsoids and arbitrary spheres for the H atoms. Symmetry code: (i) -x + 1, -y + 1, -z + 1.

Fig. 2. The packing diagram of the title compound.

[5,10,15,20-Tetrakis(4-*tert*-butylphenyl)porphyrinato- $\kappa^4 N$]zinc(II) toluene solvate

Crystal data	
$[Zn(C_{60}H_{60}N_4)] \cdot C_7H_8$	$F_{000} = 1056$
$M_r = 994.64$	$D_{\rm x} = 1.277 \ {\rm Mg \ m}^{-3}$
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 4533 reflections
<i>a</i> = 16.0277 (16) Å	$\theta = 3.2 - 25.0^{\circ}$
b = 9.5884 (14) Å	$\mu = 0.52 \text{ mm}^{-1}$
c = 16.8714 (16) Å	T = 85.0 (1) K
$\beta = 93.892 \ (8)^{\circ}$	Plate, colourless
$V = 2586.8 (5) \text{ Å}^3$	$0.25\times0.20\times0.10~mm$
Z = 2	

Data collection

Oxford Diffraction Xcalibur diffractometer	4533 independent reflections
Radiation source: Enhanced (Mo) X-ray Source	3375 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.060$
Detector resolution: 1024x1024 with blocks 2x2 pixels mm ⁻¹	$\theta_{max} = 25.0^{\circ}$
T = 85.0(1) K	$\theta_{\min} = 3.2^{\circ}$
ω scans	$h = -18 \rightarrow 19$
Absorption correction: none	$k = -7 \rightarrow 11$
14020 measured reflections	$l = -20 \rightarrow 19$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.046$	H-atom parameters not refined
$wR(F^2) = 0.122$	$w = 1/[\sigma^2(F_o^2) + (0.0778P)^2 + 0.1154P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.05	$(\Delta/\sigma)_{\rm max} < 0.001$
4533 reflections	$\Delta \rho_{max} = 0.42 \text{ e } \text{\AA}^{-3}$
341 parameters	$\Delta \rho_{min} = -0.37 \text{ e } \text{\AA}^{-3}$
93 restraints	Extinction correction: none
Primary atom site location: structure-invariant direct methods	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
Zn1	0.5000	0.5000	0.5000	0.01341 (15)	
N1	0.62401 (12)	0.5020 (2)	0.47623 (12)	0.0138 (4)	
N2	0.46708 (13)	0.5079 (2)	0.38213 (12)	0.0140 (5)	
C1	0.69152 (15)	0.5006 (3)	0.53100 (15)	0.0132 (5)	
C2	0.76805 (15)	0.5049 (3)	0.49013 (15)	0.0141 (5)	
H2A	0.8222	0.5045	0.5136	0.017*	
C3	0.74594 (15)	0.5094 (3)	0.41128 (16)	0.0155 (5)	
H3A	0.7821	0.5131	0.3704	0.019*	
C4	0.65585 (15)	0.5073 (3)	0.40256 (15)	0.0132 (5)	
C5	0.60800 (15)	0.5118 (2)	0.32961 (15)	0.0134 (5)	
C6	0.52031 (15)	0.5115 (2)	0.32132 (15)	0.0134 (5)	
C7	0.47170 (16)	0.5157 (3)	0.24613 (15)	0.0150 (5)	
H7A	0.4924	0.5188	0.1960	0.018*	
C8	0.39000 (16)	0.5143 (3)	0.26257 (15)	0.0158 (6)	
H8A	0.3442	0.5167	0.2257	0.019*	
C9	0.38730 (15)	0.5085 (2)	0.34701 (15)	0.0126 (5)	
C10	0.31249 (15)	0.5036 (3)	0.38640 (15)	0.0132 (5)	

C11	0.65151 (15)	0.5163 (3)	0.25357 (15)	0.0144 (5)
C12	0.68218 (15)	0.3966 (3)	0.21983 (16)	0.0185 (6)
H12A	0.6849	0.3143	0.2490	0.022*
C13	0.70888 (16)	0.3972 (3)	0.14360 (16)	0.0179 (6)
H13A	0.7290	0.3150	0.1226	0.021*
C14	0.70640 (15)	0.5172 (3)	0.09771 (15)	0.0161 (6)
C15	0.68138 (16)	0.6404 (3)	0.13437 (15)	0.0187 (6)
H15A	0.6832	0.7244	0.1070	0.022*
C16	0.65410 (16)	0.6393 (3)	0.21022 (16)	0.0199 (6)
H16A	0.6372	0.7223	0.2327	0.024*
C17	0.23273 (15)	0.5053 (3)	0.33498 (14)	0.0136 (5)
C18	0.20367 (16)	0.3871 (3)	0.29459 (16)	0.0194 (6)
H18A	0.2318	0.3030	0.3031	0.023*
C19	0.13317 (16)	0.3916 (3)	0.24153 (16)	0.0200 (6)
H19A	0.1156	0.3108	0.2149	0.024*
C20	0.08848 (15)	0.5146 (3)	0.22766 (15)	0.0152 (5)
C21	0.11813 (16)	0.6330 (3)	0.26884 (16)	0.0202 (6)
H21A	0.0900	0.7172	0.2607	0.024*
C22	0.18838 (16)	0.6282 (3)	0.32149 (16)	0.0202 (6)
H22A	0.2061	0.7089	0.3482	0.024*
C23	0.72525 (16)	0.5201 (3)	0.00997 (15)	0.0169 (6)
C24	0.74775 (18)	0.3764 (3)	-0.02088 (17)	0.0249 (7)
H24A	0.7967	0.3423	0.0089	0.037*
H24B	0.7587	0.3831	-0.0760	0.037*
H24C	0.7020	0.3134	-0.0149	0.037*
C25	0.79766 (17)	0.6211 (3)	-0.00308 (16)	0.0224 (6)
H25A	0.8472	0.5898	0.0268	0.034*
H25B	0.7833	0.7128	0.0143	0.034*
H25C	0.8077	0.6238	-0.0585	0.034*
C26	0.64640 (17)	0.5725 (3)	-0.03894 (16)	0.0245 (7)
H26A	0.6006	0.5103	-0.0316	0.037*
H26B	0.6572	0.5755	-0.0942	0.037*
H26C	0.6324	0.6643	-0.0214	0.037*
C27	0.01147 (16)	0.5261 (3)	0.16840 (16)	0.0183 (6)
C28	-0.01266 (18)	0.3852 (3)	0.13143 (17)	0.0258 (7)
H28A	-0.0257	0.3211	0.1725	0.039*
H28B	0.0332	0.3494	0.1038	0.039*
H28C	-0.0607	0.3964	0.0948	0.039*
C29	0.03216 (18)	0.6284 (3)	0.10215 (17)	0.0253 (7)
H29A	-0.0153	0.6368	0.0646	0.038*
H29B	0.0792	0.5939	0.0757	0.038*
H29C	0.0455	0.7180	0.1249	0.038*
C30	-0.06321 (17)	0.5829 (4)	0.21073 (18)	0.0303 (7)
H30A	-0.0765	0.5197	0.2522	0.045*
H30B	-0.1107	0.5921	0.1732	0.045*
H30C	-0.0492	0.6725	0.2333	0.045*
C31	0.9921 (2)	0.5396 (5)	0.4346 (2)	0.0522 (10)
H31	0.9935	0.5212	0.3788	0.063*
C32	0.9924 (4)	0.5772 (9)	0.5186 (4)	0.0404 (15)

0.50

C33	0.9924 (4)	0.5879 (8)	0.5862 (4)	0.0391 (16)	0.50
H33	0.9930	0.6022	0.6426	0.047*	0.50
C34	0.9744 (2)	0.7095 (5)	0.5393 (3)	0.0689 (12)	
H34A	0.9773	0.7163	0.5962	0.103*	0.50
H34B	1.0141	0.7724	0.5186	0.103*	0.50
H34C	0.9191	0.7334	0.5184	0.103*	0.50
H34	0.9632	0.8016	0.5582	0.083*	0.50
C35	0.9769 (4)	0.6616 (10)	0.4494 (5)	0.0597 (19)	0.50
H35	0.9667	0.7277	0.4072	0.072*	0.50

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn1	0.0123 (2)	0.0152 (2)	0.0127 (2)	0.00000 (17)	0.00079 (15)	0.00060 (18)
N1	0.0152 (11)	0.0134 (11)	0.0128 (11)	0.0002 (9)	-0.0001 (8)	0.0003 (9)
N2	0.0113 (10)	0.0149 (11)	0.0159 (11)	0.0009 (9)	0.0011 (8)	0.0009 (9)
C1	0.0151 (12)	0.0092 (12)	0.0153 (13)	-0.0010 (10)	0.0014 (10)	0.0022 (11)
C2	0.0100 (12)	0.0140 (13)	0.0181 (13)	-0.0007 (10)	-0.0005 (10)	0.0005 (11)
C3	0.0141 (12)	0.0137 (13)	0.0190 (14)	0.0005 (11)	0.0046 (10)	0.0003 (11)
C4	0.0133 (12)	0.0111 (12)	0.0154 (13)	0.0003 (10)	0.0022 (10)	0.0001 (11)
C5	0.0163 (13)	0.0078 (12)	0.0162 (13)	0.0002 (10)	0.0002 (10)	-0.0003 (11)
C6	0.0173 (13)	0.0092 (12)	0.0136 (13)	-0.0015 (10)	0.0010 (10)	-0.0011 (11)
C7	0.0177 (13)	0.0161 (13)	0.0113 (13)	-0.0021 (11)	0.0020 (10)	0.0008 (11)
C8	0.0156 (13)	0.0174 (14)	0.0137 (13)	0.0019 (11)	-0.0037 (10)	-0.0011 (11)
C9	0.0158 (13)	0.0070 (12)	0.0146 (13)	0.0000 (10)	-0.0019 (10)	-0.0015 (11)
C10	0.0149 (12)	0.0089 (12)	0.0156 (13)	-0.0005 (10)	-0.0007 (10)	-0.0013 (11)
C11	0.0109 (12)	0.0188 (14)	0.0130 (13)	-0.0024 (10)	-0.0018 (9)	-0.0014 (11)
C12	0.0156 (13)	0.0185 (14)	0.0214 (15)	0.0052 (11)	0.0018 (11)	0.0049 (12)
C13	0.0185 (14)	0.0154 (14)	0.0202 (14)	0.0033 (11)	0.0046 (11)	0.0001 (11)
C14	0.0106 (12)	0.0207 (14)	0.0167 (13)	-0.0010 (11)	-0.0019 (10)	-0.0012 (12)
C15	0.0217 (14)	0.0147 (14)	0.0199 (15)	-0.0017 (11)	0.0032 (11)	0.0016 (12)
C16	0.0210 (14)	0.0164 (14)	0.0226 (15)	-0.0022 (11)	0.0039 (11)	-0.0037 (12)
C17	0.0130 (12)	0.0160 (13)	0.0120 (12)	-0.0005 (11)	0.0035 (10)	0.0011 (11)
C18	0.0208 (14)	0.0144 (14)	0.0223 (15)	0.0036 (11)	-0.0041 (11)	-0.0003 (12)
C19	0.0227 (15)	0.0151 (14)	0.0213 (15)	-0.0020 (11)	-0.0049 (11)	-0.0040 (12)
C20	0.0125 (12)	0.0185 (14)	0.0146 (13)	-0.0016 (11)	0.0002 (10)	0.0022 (11)
C21	0.0200 (14)	0.0153 (14)	0.0248 (15)	0.0043 (11)	-0.0033 (11)	0.0039 (12)
C22	0.0169 (14)	0.0165 (14)	0.0266 (16)	-0.0017 (11)	-0.0037 (11)	-0.0030 (12)
C23	0.0163 (13)	0.0180 (14)	0.0163 (14)	0.0013 (11)	0.0011 (10)	0.0007 (11)
C24	0.0306 (16)	0.0256 (16)	0.0192 (15)	0.0001 (13)	0.0067 (12)	-0.0024 (13)
C25	0.0220 (15)	0.0262 (16)	0.0196 (15)	-0.0001 (12)	0.0054 (11)	0.0011 (13)
C26	0.0236 (15)	0.0333 (17)	0.0160 (15)	0.0008 (13)	-0.0016 (11)	-0.0021 (13)
C27	0.0147 (13)	0.0233 (15)	0.0165 (14)	0.0010 (11)	-0.0023 (10)	-0.0013 (11)
C28	0.0249 (15)	0.0256 (16)	0.0253 (16)	-0.0056 (12)	-0.0094 (12)	0.0000 (13)
C29	0.0240 (15)	0.0263 (16)	0.0245 (16)	-0.0014 (13)	-0.0048 (12)	0.0062 (13)
C30	0.0159 (15)	0.048 (2)	0.0259 (17)	0.0046 (14)	-0.0048 (12)	-0.0033 (15)
C31	0.0228 (18)	0.096 (3)	0.038 (2)	-0.014 (2)	-0.0018 (15)	0.016 (2)
C32	0.013 (3)	0.072 (4)	0.035 (3)	-0.013 (3)	0.002 (3)	-0.001 (3)

C33	0.022 (3)	0.062 (4)	0.033 (3)	-0.012 (3)	0.001 (3)	-0.001(3)
C34	0.0255 (19)	0.086 (3)	0.095 (3)	-0.011(2)	0.003 (2)	0.004(2)
C35	0.031 (4)	0.071 (4)	0.075 (4)	-0.017 (4)	-0.011 (3)	0.044 (4)
Geometric parai	neters (Å °)					
		2 024 (2)	621	1101 4	0.0	200
Zn1 - N2		2.024 (2)	C21	—H21A	0.9	300
Zn1 - N1		2.054(2)	C22	—H22A	0.9	300 25 (4)
NI - CI		1.374(3) 1.376(3)	C23		1.5	23 (4) 39 (4)
N1—C4 N1—N2		1.370(3)	C23		1.5	39 (4) 46 (4)
N2-C9		1.372(3)	C24	—H24А	0.9	40 (4) 600
N2-C6		1 379 (3)	C24	-H24B	0.9	600
$C1 C10^{i}$		1 400 (4)	C24	—H24C	0.9	600
C1 = C10		1.100(1) 1.448(3)	C25	H25A	0.9	600
$C^2 - C^3$		1 354 (4)	C25	—H25B	0.9	600
С2—Н2А		0.9300	C25	—H25C	0.9	600
C3—C4		1.442 (3)	C26	—H26A	0.9	600
С3—НЗА		0.9300	C26	—H26B	0.9	600
C4—C5		1.406 (4)	C26	—Н26С	0.9	600
С5—С6		1.403 (4)	C27	—C28	1.5	27 (4)
C5—C11		1.502 (3)	C27	—C30	1.5	35 (4)
С6—С7		1.444 (3)	C27	—C29	1.5	40 (4)
С7—С8		1.357 (4)	C28	—H28A	0.9	600
С7—Н7А		0.9300	C28	—H28B	0.9	600
С8—С9		1.429 (3)	C28	—H28C	0.9	600
C8—H8A		0.9300	C29	—H29A	0.9	600
C9—C10		1.411 (3)	C29	—H29B	0.9	600
C10—C1 ⁱ		1.400 (4)	C29	—Н29С	0.9	600
C10—C17		1.496 (3)	C30	—H30A	0.9	600
C11—C12		1.386 (4)	C30	—H30B	0.9	600
C11—C16		1.390 (4)	C30	—H30C	0.9	600
C12—C13		1.383 (4)	C31	—C35	1.2	24 (10)
C12—H12A		0.9300	C31	—C33 ⁱⁱ	1.3	00 (9)
C13—C14		1.386 (4)	C31	—C32 ⁱⁱ	1.3	83 (9)
C13—H13A		0.9300	C31	—C32	1.4	61 (8)
C14—C15		1.404 (4)	C31	—H31	0.9	601
C14—C23		1.531 (4)	C32	—C33	1.1	46 (9)
C15—C16		1.380 (4)	C32	—C34	1.3	52 (9)
C15—H15A		0.9300	C32	—C31 ⁱⁱ	1.3	83 (9)
C16—H16A		0.9300	C32	—C35	1.4	27 (11)
C17—C18		1.386 (4)	C33	—C31 ⁱⁱ	1.3	00 (9)
C17—C22		1.387 (4)	C33	—C34	1.4	28 (9)
C18—C19		1.394 (4)	C33	—Н33	0.9	600
C18—H18A		0.9300	C34	—C35	1.5	88 (11)
C19—C20		1.392 (4)	C34	—H34A	0.9	600
С19—Н19А		0.9300	C34	—H34B	0.9	600
C20—C21		1.397 (4)	C34	—H34C	0.9	600

C20—C27	1.539 (3)	C34—H34	0.9600
C21—C22	1.387 (4)	С35—Н35	0.9599
N2—Zn1—N2 ⁱ	180	С23—С25—Н25А	109.5
N2—Zn1—N1 ⁱ	90.06 (8)	С23—С25—Н25В	109.5
$N2^{i}$ —Zn1—N1 ⁱ	89.94 (8)	H25A—C25—H25B	109.5
N2—Zn1—N1	89.94 (8)	С23—С25—Н25С	109.5
$N2^{i}$ —Zn1—N1	90.06 (8)	H25A—C25—H25C	109.5
$N1^{i}$ $Zn1$ $N1$	180.000 (1)	H25B—C25—H25C	109.5
C1-N1-C4	106.52 (19)	C23—C26—H26A	109.5
C1-N1-Zn1	126.63 (16)	C23—C26—H26B	109.5
C4—N1—Zn1	126.84 (16)	H26A—C26—H26B	109.5
C1—N1—N2	171.20 (17)	C23—C26—H26C	109.5
C4—N1—N2	82.24 (14)	H26A—C26—H26C	109.5
C9—N2—C6	106.5 (2)	H26B—C26—H26C	109.5
C9—N2—Zn1	126.69 (17)	C28—C27—C30	108.7 (2)
C6—N2—Zn1	126.79 (17)	C28—C27—C29	109.1 (2)
C9—N2—N1	172.12 (17)	C30—C27—C29	109.0 (2)
C6—N2—N1	81.34 (14)	C28—C27—C20	111.8 (2)
Zn1—N2—N1	45.45 (6)	C30—C27—C20	109.9 (2)
C6—N2—N1 ⁱⁱⁱ	134.36 (14)	C29—C27—C20	108.3 (2)
Zn1—N2—N1 ⁱⁱⁱ	96.26 (6)	C27—C28—H28A	109.5
N1—N2—N1 ⁱⁱⁱ	139.30 (6)	С27—С28—Н28В	109.5
N1—C1—C10 ⁱ	125.6 (2)	H28A—C28—H28B	109.5
N1—C1—C2	109.5 (2)	C27—C28—H28C	109.5
C10 ⁱ —C1—C2	124.9 (2)	H28A—C28—H28C	109.5
C3—C2—C1	107.2 (2)	H28B—C28—H28C	109.5
C3—C2—H2A	126.4	С27—С29—Н29А	109.5
C1—C2—H2A	126.4	С27—С29—Н29В	109.5
C2—C3—C4	107.1 (2)	H29A—C29—H29B	109.5
С2—С3—НЗА	126.5	С27—С29—Н29С	109.5
С4—С3—Н3А	126.5	H29A—C29—H29C	109.5
N1—C4—C5	125.3 (2)	H29B—C29—H29C	109.5
N1—C4—C3	109.8 (2)	С27—С30—Н30А	109.5
C5—C4—C3	124.9 (2)	С27—С30—Н30В	109.5
C6—C5—C4	124.8 (2)	H30A—C30—H30B	109.5
C6—C5—C11	115.8 (2)	С27—С30—Н30С	109.5
C4—C5—C11	119.4 (2)	H30A—C30—H30C	109.5
N2—C6—C5	126.3 (2)	H30B-C30-H30C	109.5
N2—C6—C7	109.3 (2)	C35—C31—C33 ⁱⁱ	176.1 (6)
C5—C6—C7	124.4 (2)	C35—C31—C32 ⁱⁱ	133.5 (6)
C8—C7—C6	106.9 (2)	C33 ⁱⁱ —C31—C32 ⁱⁱ	50.5 (4)
С8—С7—Н7А	126.5	C35—C31—C32	63.5 (6)
С6—С7—Н7А	126.5	C33 ⁱⁱ —C31—C32	120.4 (6)
C7—C8—C9	107.4 (2)	C32 ⁱⁱ —C31—C32	70.0 (6)
С7—С8—Н8А	126.3	C35—C31—H31	113.2

C9—C8—H8A	126.3	C33 ⁱⁱ —C31—H31	62.9
N2—C9—C10	126.4 (2)	C32 ⁱⁱ —C31—H31	113.3
N2—C9—C8	109.9 (2)	C32—C31—H31	175.9
C10—C9—C8	123.7 (2)	C33—C32—C34	69.1 (6)
C1 ⁱ —C10—C9	124.6 (2)	C33—C32—C31 ⁱⁱ	61.0 (6)
C1 ⁱ —C10—C17	118.8 (2)	C34—C32—C31 ⁱⁱ	130.2 (6)
C9—C10—C17	116.5 (2)	C33—C32—C35	138.8 (9)
C12—C11—C16	117.6 (2)	C34—C32—C35	69.6 (6)
C12—C11—C5	121.7 (2)	C31 ⁱⁱ —C32—C35	160.0 (8)
C16—C11—C5	120.4 (2)	C33—C32—C31	170.8 (9)
C11—C12—C13	121.3 (2)	C34—C32—C31	119.7 (6)
C11—C12—H12A	119.4	C31 ⁱⁱ —C32—C31	110.0 (6)
C13—C12—H12A	119.4	C35—C32—C31	50.1 (5)
C12—C13—C14	121.6 (2)	C33—C32—C32 ⁱⁱ	118.2 (9)
C12—C13—H13A	119.2	C34—C32—C32 ⁱⁱ	172.0 (8)
C14—C13—H13A	119.2	C31 ⁱⁱ —C32—C32 ⁱⁱ	57.2 (5)
C13—C14—C15	116.8 (2)	C35—C32—C32 ⁱⁱ	102.9 (8)
C13—C14—C23	123.7 (2)	C31—C32—C32 ⁱⁱ	52.7 (4)
C15—C14—C23	119.4 (2)	C32—C33—C31 ⁱⁱ	68.5 (6)
C16—C15—C14	121.3 (2)	C32—C33—C34	62.2 (6)
C16—C15—H15A	119.3	C31 ⁱⁱ —C33—C34	130.7 (6)
C14—C15—H15A	119.3	С32—С33—Н33	176.9
C15-C16-C11	121.1 (2)	C31 ⁱⁱ —C33—H33	114.4
C15—C16—H16A	119.4	С34—С33—Н33	114.8
C11—C16—H16A	119.4	С32—С33—Н34А	103.4
C18—C17—C22	117.5 (2)	C31 ⁱⁱ —C33—H34A	171.9
C18—C17—C10	121.4 (2)	H33—C33—H34A	73.7
C22—C17—C10	120.9 (2)	C32—C34—C33	48.6 (4)
C17—C18—C19	121.4 (2)	C32—C34—C35	57.4 (5)
C17—C18—H18A	119.3	C33—C34—C35	106.0 (5)
C19—C18—H18A	119.3	C32—C34—H34A	109.0
C20—C19—C18	121.3 (2)	С33—С34—Н34А	60.5
С20—С19—Н19А	119.3	С35—С34—Н34А	166.4
C18—C19—H19A	119.3	С32—С34—Н34В	109.7
C19—C20—C21	116.8 (2)	C33—C34—H34B	127.0
C19—C20—C27	123.4 (2)	C35—C34—H34B	76.9
C21—C20—C27	119.7 (2)	H34A—C34—H34B	109.5
C22—C21—C20	121.7 (2)	С32—С34—Н34С	109.7
C22—C21—H21A	119.1	С33—С34—Н34С	123.1
C20—C21—H21A	119.1	С35—С34—Н34С	78.4
C17—C22—C21	121.2 (2)	H34A—C34—H34C	109.5
C17—C22—H22A	119.4	H34B—C34—H34C	109.5
C21—C22—H22A	119.4	C32—C34—H34	175.5
C24—C23—C14	112.4 (2)	C33—C34—H34	127.0
$C_{24} - C_{23} - C_{25}$	108.8 (2)	C35—C34—H34	126.9
C14—C23—C25	110.5 (2)	H34A—C34—H34	66.6

C24—C23—C26	108.4 (2)	H34B—C34—H34	71.8
C14—C23—C26	108.3 (2)	H34C—C34—H34	73.3
C25—C23—C26	108.4 (2)	C31—C35—C32	66.4 (5)
C23—C24—H24A	109.5	C31—C35—C34	119.3 (6)
C23—C24—H24B	109.5	C32—C35—C34	52.9 (5)
H24A—C24—H24B	109.5	С31—С35—Н35	120.4
C23—C24—H24C	109.5	С32—С35—Н35	173.1
H24A—C24—H24C	109.5	С34—С35—Н35	120.3
H24B—C24—H24C	109.5		
N2—Zn1—N1—C1	178.9 (2)	C12-C13-C14-C23	-172.5 (2)
$N2^{i}$ —Zn1—N1—C1	-1.1 (2)	C13-C14-C15-C16	-5.1 (4)
N2—Zn1—N1—C4	0.1 (2)	C23-C14-C15-C16	172.1 (2)
N2 ⁱ —Zn1—N1—C4	-179.9 (2)	C14—C15—C16—C11	0.9 (4)
$N2^{i}$ —Zn1—N1—N2	180.0	C12—C11—C16—C15	3.9 (4)
N1 ⁱ —Zn1—N2—C9	-0.8 (2)	C5-C11-C16-C15	-169.3 (2)
N1—Zn1—N2—C9	179.2 (2)	C1 ⁱ —C10—C17—C18	-103.8 (3)
N1 ⁱ —Zn1—N2—C6	-179.6 (2)	C9—C10—C17—C18	77.2 (3)
N1—Zn1—N2—C6	0.4 (2)	C1 ⁱ —C10—C17—C22	81.0 (3)
$N1^{i}$ —Zn1—N2—N1	180.0	C9—C10—C17—C22	-98.0 (3)
$N1^{i}$ — $Zn1$ — $N2$ — $N1^{iii}$	-15.84 (6)	C22—C17—C18—C19	0.8 (4)
N1—Zn1—N2—N1 ⁱⁱⁱ	164.16 (6)	C10-C17-C18-C19	-174.5 (2)
C4—N1—N2—C6	0.37 (18)	C17—C18—C19—C20	-0.8 (4)
Zn1—N1—N2—C6	-179.72 (16)	C18-C19-C20-C21	0.5 (4)
C4—N1—N2—Zn1	-179.92 (16)	C18-C19-C20-C27	178.6 (2)
C4—N1—N2—N1 ⁱⁱⁱ	155.51 (13)	C19—C20—C21—C22	-0.4 (4)
Zn1—N1—N2—N1 ⁱⁱⁱ	-24.58 (8)	C27—C20—C21—C22	-178.6 (2)
C4—N1—C1—C10 ⁱ	179.6 (2)	C18—C17—C22—C21	-0.7 (4)
Zn1—N1—C1—C10 ⁱ	0.6 (4)	C10-C17-C22-C21	174.7 (2)
C4—N1—C1—C2	-0.2 (3)	C20—C21—C22—C17	0.5 (4)
Zn1—N1—C1—C2	-179.16 (16)	C13—C14—C23—C24	-0.5 (3)
N1—C1—C2—C3	0.3 (3)	C15-C14-C23-C24	-177.5 (2)
C10 ⁱ —C1—C2—C3	-179.5 (2)	C13—C14—C23—C25	-122.2 (3)
C1—C2—C3—C4	-0.3 (3)	C15-C14-C23-C25	60.8 (3)
C1—N1—C4—C5	-179.3 (2)	C13-C14-C23-C26	119.2 (3)
Zn1—N1—C4—C5	-0.3 (4)	C15-C14-C23-C26	-57.8 (3)
N2—N1—C4—C5	-0.2 (2)	C19—C20—C27—C28	3.7 (4)
C1—N1—C4—C3	0.0 (3)	C21—C20—C27—C28	-178.3 (2)
Zn1—N1—C4—C3	178.98 (15)	C19—C20—C27—C30	124.5 (3)
N2—N1—C4—C3	179.06 (19)	C21—C20—C27—C30	-57.5 (3)
C2—C3—C4—N1	0.2 (3)	C19—C20—C27—C29	-116.6 (3)
C2—C3—C4—C5	179.4 (2)	C21—C20—C27—C29	61.4 (3)
N1—C4—C5—C6	0.0 (4)	C35—C31—C32—C34	1.4 (6)
C3—C4—C5—C6	-179.2 (2)	C33 ⁱⁱ —C31—C32—C34	-178.6 (5)
N1-C4-C5-C11	-179.5 (2)	C32 ⁱⁱ —C31—C32—C34	-176.6 (8)
C3—C4—C5—C11	1.3 (4)	C35—C31—C32—C31 ⁱⁱ	178.1 (6)

C0 N2 C6 C5	170.8 (2)		20(6)			
C9—N2—C0—C3	-1/9.8(2)	C33 [*] -C31-C32-C31 ^{**}	-2.0 (0)			
Zn1—N2—C6—C5	-0.7 (4)	C32 ⁿ —C31—C32—C31 ⁿ	0.0			
N1—N2—C6—C5	-0.5 (2)	C33 ¹¹ —C31—C32—C35	180.0 (6)			
N1 ⁱⁱⁱ —N2—C6—C5	-157.91 (17)	C32 ⁱⁱ —C31—C32—C35	-178.1 (6)			
C9—N2—C6—C7	0.5 (3)	C35—C31—C32—C32 ⁱⁱ	178.1 (6)			
Zn1—N2—C6—C7	179.57 (16)	C33 ⁱⁱ —C31—C32—C32 ⁱⁱ	-2.0 (6)			
N1—N2—C6—C7	179.82 (19)	C34—C32—C33—C31 ⁱⁱ	178.7 (4)			
N1 ⁱⁱⁱ —N2—C6—C7	22.4 (3)	C35—C32—C33—C31 ⁱⁱ	176.6 (9)			
C4C5C6N2	0.6 (4)	C32 ⁱⁱ —C32—C33—C31 ⁱⁱ	2.1 (6)			
C11—C5—C6—N2	-179.9 (2)	C31 ⁱⁱ —C32—C33—C34	-178.7 (4)			
C4—C5—C6—C7	-179.8 (2)	C35—C32—C33—C34	-2.0 (8)			
C11—C5—C6—C7	-0.3 (4)	C32 ⁱⁱ —C32—C33—C34	-176.6 (8)			
N2—C6—C7—C8	-0.1 (3)	C31 ⁱⁱ —C32—C34—C33	1.5 (5)			
C5—C6—C7—C8	-179.8 (2)	C35—C32—C34—C33	178.6 (6)			
C6—C7—C8—C9	-0.3 (3)	C31—C32—C34—C33	177.4 (7)			
C6—N2—C9—C10	179.0 (2)	C33—C32—C34—C35	-178.6 (6)			
Zn1—N2—C9—C10	0.0 (3)	C31 ⁱⁱ —C32—C34—C35	-177.0 (8)			
N1 ⁱⁱⁱ —N2—C9—C10	27.91 (17)	C31—C32—C34—C35	-1.2 (5)			
C6—N2—C9—C8	-0.7 (3)	C31 ⁱⁱ —C33—C34—C32	-1.6 (6)			
Zn1—N2—C9—C8	-179.78 (16)	C32—C33—C34—C35	1.3 (5)			
N1 ⁱⁱⁱ —N2—C9—C8	-151.8 (3)	C31 ⁱⁱ —C33—C34—C35	-0.4 (8)			
C7—C8—C9—N2	0.7 (3)	C32 ⁱⁱ —C31—C35—C32	2.5 (8)			
C7—C8—C9—C10	-179.1 (2)	C32 ⁱⁱ —C31—C35—C34	1.3 (10)			
N2-C9-C10-C1 ⁱ	1.0 (4)	C32—C31—C35—C34	-1.2 (5)			
C8—C9—C10—C1 ⁱ	-179.3 (2)	C33—C32—C35—C31	-176.6 (9)			
N2-C9-C10-C17	-180.0 (2)	C34—C32—C35—C31	-178.7 (5)			
C8—C9—C10—C17	-0.3 (4)	C31 ⁱⁱ —C32—C35—C31	-5.3 (17)			
C6-C5-C11-C12	-98.2 (3)	C32 ⁱⁱ —C32—C35—C31	-1.6 (5)			
C4—C5—C11—C12	81.3 (3)	C33—C32—C35—C34	2.0 (8)			
C6—C5—C11—C16	74.7 (3)	C31 ⁱⁱ —C32—C35—C34	173.3 (17)			
C4—C5—C11—C16	-105.8 (3)	C31—C32—C35—C34	178.7 (5)			
C16—C11—C12—C13	-4.5 (4)	C32 ⁱⁱ —C32—C35—C34	177.1 (7)			
C5-C11-C12-C13	168.6 (2)	C32—C34—C35—C31	1.4 (5)			
C11—C12—C13—C14	0.2 (4)	C33—C34—C35—C31	0.3 (7)			
C12—C13—C14—C15	4.6 (4)	C33—C34—C35—C32	-1.1 (5)			
$\mathbf{S}_{\mathbf{r}} = \mathbf{s}_{\mathbf{r}} $						

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+2, -y+1, -z+1; (iii) -x-1, -y, -z+1.

Fig. 2

